Exploring Heuristic Reasoning

Exploring Heuristic Reasoning

Vicente Talanquer Department of Chemistry and Biochemistry University of Arizona

Our Interests

How does student thinking about "chemical entities" evolve?

Our Goal

Generate cognitive models that can help us predict, explain, assess, and transform how chemistry students think.

Cognitive models need to focus on central/ overarching/powerful/ ideas in the domain.

Chemists have some sort of "obsession" for topical approaches

Stoichiometry Kinetics Equilibrium Acid-Bases	Global warming Ozone layer Polymers Drugs	VS.	Structure/Properties Chemical Classification Chemical Synthesis	
What they know How they think				

The Interest

Imagine that you were interested in exploring how people with different levels of expertise understand/think about/apply structure → properties relationships.

The Challenge

Exploring Heuristic Reasoning

Our Framework

Our Work

GOAL: Identification and characterization of implicit assumptions and heuristics that constrain chemistry students' thinking.

Tasks that Demand Qualitative Reasoning Classification Prediction/Inference Comparison and Ranking Explanation

HEURISTIC REASONING

TASKS

Comparison and Ranking

Simple (preconscious) reasoning processes that reduce the effort associated with a task, particularly under conditions of limited time, knowledge, and computational power.

> FAST FRUGAL

ADAPTIVE OR ECOLOGICALLY RATIONAL

DOMAIN-GENERAL but **TASK-SPECIFIC**

Do fires or tuberculosis cause more deaths in the US?

AVAILABILITY HEURISTIC

Which car brand is of better quality: Saab or Honda?

RECOGNITION HEURISTIC

What is happening?

LEXICOGRAPHIC HEURISTIC (More A → More B)

Heuristics reasoning has been described, modeled, and analyzed using different approaches:

Fast-and-Frugal

Adaptive Toolbox

Human possess a repertoire of specialized heuristics that can solve specific tasks in specific environments.

They draw from:

Core capacities (e.g., memory, vision);

Environment structure (physical, social)

P. M. Todd & G. Gigerenzer. *Behavioral and Brain Sciences* 23, 727 (2000).

Fast-and-Frugal

How do we catch baseballs?

Reliance on implicit assumptions about the world

Dual-Process

Dual-process theories claim that we have two different modes of information processing:

Type 1 (Heuristic)	Type 2 (Analytical)		
Unconscious	Conscious		
Automatic	Controlled		
Low Effort	High Effort		
Rapid	Slow		
Pragmatic, perceptual	Analytic, reflective		
Independent of WMC	Limited by WMC		
Default	Inhibitory		

J. S. B. T. Evans. Annu. Rev. Psychol. 59, 255 (2008).

Dual-Process

Let's do some problems!

On the following slides I will show you some typical math word problem tasks.

Before showing each problem, I will display a "dot matrix" like this for 1 s.

Then I will show the problem, give you 15 s to solve it, and ask you to write the numerical answer together with a drawing of the dot matrix.

Erik and Tom buy boxes of pencils in the shop. All boxes are equally expensive, but Erik buys fewer boxes.

Erik buys 4 boxes of pencils, while Tom buys 8 boxes.

If Erik has to pay 24 dollars, how much does Tom have to pay?

Your Answer

Ellen and Kim are running around a track. They run equally fast but Ellen started later.

When Ellen has run 5 laps, Kim has run 15 laps.

When Ellen has run 30 laps, how many has Kim run?

Your Answer

Decision Making

Analytical judgment and decision making requires the consideration of all of the available alternatives and cues for each alternative:

- **1.** Identifying all cues (piece of information);
- **2.** Recalling and storing cue values;
- **3.** Assessing the weights of each cue;
- **4.** Integrating information for all alternatives;
- **5.** Comparing all of the alternatives.

Shah & Oppenheimer. Psychological Bulletin. 134, 207 (2008).

Heuristics

Heuristic reasoning is based on strategies of effortreduction and simplification in any of these areas:

- 1. Examining fewer cues;
- 2. Reducing the difficulty for retrieving and storing cue values;
- **3.** Simplifying weighting principles for cues;
- 4. Integrating less information;
- 5. Examining fewer alternatives.

Do homicides or suicides cause more deaths in the US?

Our Investigation

Analysis of college chemistry students' use of heuristics when solving "comparison and ranking" tasks:

Explicit Composition Features Which of the following substances is more soluble in water? NaCl, MgO, BaO, NaBr

Explicit Composition and Structure Features Which of the following substances is a stronger acid?

Methodology

The Subjects:

Science and Engineering majors enrolled in General Chemistry II.

Instruments:

- Questionnaire (n = 414).
- $> \frac{1}{2}$ -hour interviews (34 \rightarrow 25 F; 9 M)

Maeyer & Talanquer. Science Education (Published online, 2010).

The Subjects:

Science majors enrolled in Organic Chemistry I.

Instruments:

 $> \frac{1}{2}$ -hour interviews (20 \rightarrow 11 F; 9 M)

Analytical Reasoning

Arrange the following substances in order of increasing solubility: NaCl, NaBr, MgO, BaO

- **1.** Identifying cues: Ionic, ion charge and size.
- 2. Recalling cue values: Na⁺, Mg²⁺, Cl⁻, r_{Cl-} < r_{Br-}, ...
- **3.** Assessing cues: $F \sim q_1 q_2/r^2$
- 4. Integrating information: MgO, BaO → NaCI, NaBr
- **5.** Comparing options: MgO < BaO < NaCl < NaBr

Some Results

BaO < MgO < NaBr < NaCl — Recognition

Recognition: If one object is recognized, then infer that the recognized object has the higher/lower value with respect to the criterion.

BaO < MgO < NaBr < NaCl ?

Some Heuristics

Similarity (Representativeness): Assume commonality between objects of similar appearance.

Lexicographic (One Reason Decision Making):

Look for one differentiating cue (one at a time) that allow you to discriminate. Select the option with the highest or lowest value on the selected cue.

Heuristic Use

Types of Associations

Structural Features

Ranking of substances based structural formulas relied on similar heuristics:

Enriched Knowledge Base- Similar Reasoning Mechanisms

Functional Groups →

Recognition/Representativeness (Hybrids?) Reduction

The nature of the most salient features of each task influenced both:

> types of heuristics;

Cues,

frequently used.

BOTTOM-UP

(representativeness, recognition; explicit cues)

TOP-DOWN (lexicographic; implicit cues)

Open Questions

Given what we know:

Instruction:

- How do we help students to better control or take advantage of heuristic reasoning?
- How do we better facilitate their identification of relevant cues in decision-making?

Assessment:

How do we design assessments that differentiate between heuristic/analytical reasoning?

Acknowledgements

Graduate Students Jenine Maeyer Lakeisha McClary

Student Participants

Contact: vicente@u.arizona.edu